SADLER MATHEMATICS METHODS UNIT 2

WORKED SOLUTIONS

Chapter 5 Rates of change

Exercise 5A

Question 1

- **a** From A to B, from D to F
- **b** From B to D, from F to I
- **c** At B,D, F and H

Question 2

Graph True Statements

Ι	В	С	D	E	F	G
II	А					
III	Н					
IV	А	D	G			
V	А	D	Н			
VI	С	F				
VII	А	E	G			
VIII	А	В	F	G		
IX	А	E	F	G		
Х	В	F	Н			

- **a** C, E, H, K, M, O
- **b** A, B, I, J, N, P
- **c** D, F, G, L

Question 4

By considering the height of the green triangle, we can see the tangent has a gradient of 2

By considering the height of the orange triangle, we can see the tangent has a gradient of 4

- **c** The tangent at (0, 0) is the *x*-axis so the gradient is 0.
- **d** By symmetry, the gradient at x = -1 is -2.
- **e** By symmetry, the gradient at x = -2 is -4.
- **f** The curve $y = x^2 + 3$ is exactly the same shape as $y = x^2$ so the gradient is 2.
- g) The curve $y = (x-2)^2$ is exactly the same shape as $y = x^2$ but translated 2 units right. The gradient at x = 3 on $y = (x-2)^2$ is the same as the gradient as x = -1 on $y = x^2$, i.e. 2.

Question 6

Exercise 5B

Question 1

Point P	Point Q	Gradient of chord PQ
(2, 4)	(4, 16)	$\frac{16-4}{4-2} = 6$
(2, 4)	(3,9)	$\frac{9-4}{3-2} = 5$
(2, 4)	(2.5, 6.25)	$\frac{6.25 - 4}{2.5 - 2} = 4.5$
(2, 4)	(2.1, 4.41)	$\frac{4.41 - 4}{2.1 - 2} = 4.1$
(2, 4)	(2.01, 4.0401)	$\frac{4.0401 - 4}{2.01 - 2} = 4.01$
(2, 4)	(2.001, 4.004001)	$\frac{4.004001 - 4}{2.001 - 2} = 4.001$
(2, 4)	(2.0001, 4.00040001)	$\frac{4.00040001 - 4}{2.0001 - 2} = 4.0001$

The gradient at $y = x^2$ at x = 2 is 4.

Point P	Point Q	Gradient of chord PQ
(3, 9)	(4, 16)	$\frac{16-9}{4-3} = 7$
(3, 9)	(3.5, 12.25)	$\frac{12.25 - 9}{3.5 - 3} = 6.5$
(3, 9)	(3.1, 9.61)	$\frac{9.61 - 9}{3.1 - 3} = 6.1$
(3, 9)	(3.01, 9.0601)	$\frac{9.0601 - 9}{3.01 - 3} = 6.01$
(3, 9)	(3.001, 9.006001)	$\frac{9.006001 - 9}{3.001 - 3} = 6.001$

The gradient at $y = x^2$ at x = 3 is 6.

Point P	Point Q	Gradient of chord PQ
(4, 16)	(5, 25)	$\frac{25-16}{5-4} = 9$
(4, 16)	(4.5, 20.25)	$\frac{20.25 - 16}{4.5 - 4} = 8.5$
(4, 16)	(4.1, 16.81)	$\frac{16.81 - 16}{4.1 - 4} = 8.1$
(4, 16)	(4.01, 16.0801)	$\frac{16.0801 - 16}{4.01 - 4} = 8.01$
(4, 16)	(4.001, 16.008001)	$\frac{16.008001 - 16}{4.001 - 4} = 8.001$

The gradient at $y = x^2$ at x = 4 is 8.

Point P	Point Q	Gradient of chord PQ
(5, 25)	(6, 36)	$\frac{36-25}{6-5} = 11$
(5, 25)	(5.5, 30.25)	$\frac{30.25 - 25}{5.5 - 5} = 10.5$
(5, 25)	(5.1, 26.01)	$\frac{26.01 - 25}{5.1 - 5} = 10.1$
(5, 25)	(5.01, 25.1001)	$\frac{25.1001 - 25}{5.01 - 5} = 10.01$
(5, 25)	(5.001, 25.010001)	$\frac{25.010001 - 25}{5.001 - 5} = 10.001$

The gradient at $y = x^2$ at x = 5 is 10.

For $y = x^2$	x	0	1	2	3	4	5
	gradient	0	2	4	6	8	10

The gradient at x = a on the curve $y = x^2$ is 2a.

Point P	Point Q	Gradient of chord PQ
(2, 12)	(3, 27)	$\frac{27-12}{3-2} = 15$
(2, 12)	(2.5, 18.75)	$\frac{18.75 - 12}{2.5 - 2} = 13.5$
(2, 12)	(2.1, 13.23)	$\frac{13.23 - 12}{2.1 - 2} = 12.3$
(2, 12)	(2.01, 12.1203)	$\frac{12.1203 - 12}{2.01 - 2} = 12.03$
(2, 12)	(2.001, 12.012003)	$\frac{12.012003 - 12}{2.001 - 2} = 12.003$

The gradient at $y = 3x^2$ at x = 2 is 12.

Point P	Point Q	Gradient of chord PQ
(3, 27)	(4, 48)	$\frac{48 - 27}{4 - 3} = 21$
(3, 27)	(3.5, 36.75)	$\frac{36.75 - 27}{3.5 - 3} = 19.5$
(3, 27)	(3.1, 28.83)	$\frac{28.83 - 27}{3.1 - 3} = 18.3$
(3, 27)	(3.01, 27.1803)	$\frac{27.1803 - 27}{3.01 - 3} = 18.03$
(3, 27)	(3.001, 27.018003)	$\frac{27.018003 - 27}{3.001 - 3} = 18.003$

The gradient at $y = 3x^2$ at x = 3 is 18.

Point P	Point Q	Gradient of chord PQ
(4, 48)	(5, 125)	$\frac{125 - 48}{5 - 4} = 77$
(4, 48)	(4.5, 60.75)	$\frac{60.75 - 48}{4.5 - 4} = 25.5$
(4, 48)	(4.1, 50.43)	$\frac{50.43 - 48}{4.1 - 4} = 24.3$
(4, 48)	(4.01, 48.2403)	$\frac{48.2403 - 48}{4.01 - 4} = 24.03$
(4, 48)	(4.001, 48.024003)	$\frac{48.024003 - 48}{4.001 - 4} = 24.003$

The gradient at $y = 3x^2$ at x = 4 is 24.

For $y = 3x^2$	x	0	1	2	3	4	5
	gradient	0	6	12	18	24	30

The gradient at x = a on the curve $y = 3x^2$ is 6a.

Exercise 5C

Question 1

Gradient at
$$P(x, 4x^2) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

 $= \lim_{h \to 0} \frac{4(x+h)^2 - 4x^2}{h}$
 $= \lim_{h \to 0} \frac{4x^2 + 8xh + 4h^2 - 4x^2}{h}$
 $= \lim_{h \to 0} \frac{8xh + 4h^2}{h}$
 $= \lim_{h \to 0} 8x + 4h$

Gradient at
$$P(x, 2x^3) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{2(x+h)^3 - 2x^3}{h}$$

$$= \lim_{h \to 0} \frac{2x^3 + 6x^2h + 6xh^2 + 2h^3 - 2x^3}{h}$$

$$= \lim_{h \to 0} \frac{6x^2h + 6xh^2 + 2h^3}{h}$$

$$= \lim_{h \to 0} 6x^2 + 6xh + 2h^2$$

$$= 6x^2$$

Gradient at
$$P(x, x^4) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^4 - x^4}{h}$$

$$= \lim_{h \to 0} \frac{x^4 + 4x^3h + 6x^2h^2 + 4xh^3 + h^4 - x^4}{h}$$

$$= \lim_{h \to 0} \frac{4x^3h + 6x^2h^2 + 4xh^3 + h^4}{h}$$

$$= \lim_{h \to 0} 4x^3 + 6x^2h + 4xh^2 + h^3$$

$$= 4x^3$$

Exercise 5D

Question 1

$$\frac{dy}{dx} = 2x$$

Question 2

 $\frac{dy}{dx} = 3x^2$

Question 3

 $\frac{dy}{dx} = 1$

Question 4

$$\frac{dy}{dx} = 4x^3$$

Question 5

 $\frac{dy}{dx} = 0$

Question 6

 $\frac{dy}{dx} = 12x$

 $\frac{dy}{dx} = 24x^3$

Question 8

 $\frac{dy}{dx} = 7$

Question 9

$$\frac{dy}{dx} = 16$$

Question 10

 $\frac{dy}{dx} = 14x^6$

Question 11

 $\frac{dy}{dx} = 14x$

Question 12

 $\frac{dy}{dx} = 9$

Question 13

 $\frac{dy}{dx} = \frac{2x}{10} = \frac{x}{5}$

 $\frac{dy}{dx} = \frac{12x^5}{3} = 4x^5$

Question 15

 $\frac{dy}{dx} = \frac{18x^5}{2} = 9x^5$

Question 16

 $\frac{dy}{dx} = \frac{14x^6}{7} = 2x^6$

Question 17

 $\frac{dy}{dx} = 8x$

Question 18

 $\frac{dy}{dx} = 20x^3$

Question 19

 $\frac{dy}{dx} = 24x^2$

Question 20

 $\frac{dy}{dx} = 0$

 $\frac{dy}{dx} = 7x^6$

Question 22

 $\frac{dy}{dx} = 24x^5$

Question 23

$$\frac{dy}{dx} = 18x$$

Question 24

 $\frac{dy}{dx} = 5$

Question 25

f'(x) = 0

Question 26

 $f'(x) = 18x^2$

Question 27

 $f'(x) = 32x^3$

 $f'(x) = 15x^4$

Question 29

 $f'(x) = 6x^5$

Question 30

 $f'(x) = 42x^6$

Question 31

 $f'(x) = 16x^3$

Question 32

f'(x) = 10

$$\frac{dy}{dx} = 4x$$

at $x = 3$,
$$\frac{dy}{dx} = 4(3)$$

 $= 12$

$$\frac{dy}{dx} = 12x^{2}$$

at $x = 1$,
$$\frac{dy}{dx} = 12(1)^{2}$$
$$= 12$$

Question 35

$$\frac{dy}{dx} = 12x^{2}$$

at $x = -1$,
$$\frac{dy}{dx} = 12(-1)^{2}$$
$$= 12$$

Question 36

$$\frac{dy}{dx} = 5x^4$$

at $x = 2$,
$$\frac{dy}{dx} = 5(2)^4$$
$$= 80$$

Question 37

 $\frac{dy}{dx} = 7$ at all points

$$\frac{dy}{dx} = 10x$$

at $x = -2$,
$$\frac{dy}{dx} = 10(-2)$$
$$= -20$$

Question 39

$$\frac{dy}{dx} = 0.5x$$

at $x = 4$,
$$\frac{dy}{dx} = 0.5(4)$$
$$= 2$$

Question 40

$$\frac{dy}{dx} = \frac{2x}{5}$$

at $x = 2$,
$$\frac{dy}{dx} = \frac{2(2)}{5}$$
$$= 0.8$$

$$\frac{dy}{dx} = 4x^3 = 4$$
$$x^3 = 1$$
$$x = 1$$
at $x = 1, y = (1)^4 = 1$
$$\therefore (1,1)$$

$$\frac{dy}{dx} = 3x^2 = 3$$

 $x^2 = 1$
 $x = \pm 1$
at $x = -1$, $y = (-1)^3 = -1$
at $x = 1$, $y = (1)^3 = 1$
∴ $(-1, -1)$ and $(1, 1)$

Question 43

$$\frac{dy}{dx} = 6x = 9$$

x = 1.5
at x = 1.5, y = 3(1.5)² = 6.75
 \therefore (1.5, 6.75)

$$\frac{dy}{dx} = 6x^2 = 1.5$$

$$x^2 = \frac{1}{4}$$

$$x = \pm \frac{1}{2}$$

at $x = -\frac{1}{2}, y = 2(-\frac{1}{2})^3 = -\frac{1}{4}$
at $x = \frac{1}{2}, y = 2(\frac{1}{2})^3 = \frac{1}{4}$
 $\therefore (-\frac{1}{2}, -\frac{1}{4})$ and $(\frac{1}{2}, \frac{1}{4})$

$$\frac{dy}{dx} = 6x^5 = 6$$

$$x^5 = 1$$

$$x = 1$$
at $x = 1, y = (1)^6 = 1$

$$\therefore (1, 1)$$

Question 46

$$\frac{dy}{dx} = 6x^5 = -6$$

$$x^5 = -1$$

$$x = -1$$
at $x = -1$, $y = (-1)^6 = 1$

$$\therefore (-1, 1)$$

$$\frac{dy}{dx} = 6x^{2}$$

at $x = 1$, $y\frac{dy}{dx} = 6(1)^{2} = 6$
 $y = 6x + c$
 $2 = 6(1) + c$
 $c = -4$
 \therefore equation of tangent $y = 6x - 4$

$$\frac{dy}{dx} = 6x$$

at $x = -1$, $y\frac{dy}{dx} = 6(-1) = -6$
 $y = -6x + c$
 $3 = -6(-1) + c$
 $c = -3$
 \therefore equation of tangent $y = -6x - 3$

Question 49

$$\frac{dy}{dx} = 10x$$

at $x = 2$, $y\frac{dy}{dx} = 10(2) = 20$
 $y = 20x + c$
 $20 = 20(2) + c$
 $c = -20$
 \therefore equation of tangent $y = 20x - 20$

$$\frac{dy}{dx} = 10x$$

at $x = -2$, $y\frac{dy}{dx} = 10(-2) = -20$
 $y = -20x + c$
 $20 = -20(-2) + c$
 $c = -20$
∴ equation of tangent $y = -20x - 20$

$$\frac{dy}{dx} = 2x^{3}$$

at $x = 2$, $y\frac{dy}{dx} = 2(2)^{3} = 16$
 $y = 16x + c$
 $8 = 16(2) + c$
 $c = -24$
 \therefore equation of tangent $y = 16x - 24$

Question 52

$$\frac{dy}{dx} = \frac{x^2}{2}$$

at $x = 6$, $y\frac{dy}{dx} = \frac{(6)^2}{2} = 18$
 $y = 18x + c$
 $36 = 18(6) + c$
 $c = -72$
 \therefore equation of tangent $y = 18x - 72$

- **a** $f(2) = 3(2)^3 = 24$
- **b** $f(-1) = 3(-1)^3 = -3$
- **c** $f'(x) = 9x^2$
- **d** $f'(2) = 9(2)^2 = 36$

- **a** $f(2) = 1.5(2)^2 = 6$
- **b** $f(4) = 1.5(4)^2 = 24$
- **c** f'(x) = 3x
- **d** f'(2) = 3(2) = 6

- **a** at x = 2, $y = 2(2)^3 = 16$ at x = 5, $y = 2(5)^3 = 250$ \therefore y changes by 234
- **b** $\frac{234}{3} = 78$ units per unit change in x
- c $\frac{dy}{dx} = 6x^{2}$ at x = 2 $\frac{dy}{dx} = 6(2)^{2} = 24$ d $\frac{dy}{dx} = 6x^{2}$ at x = 5dy

$$\frac{dy}{dx} = 6(5)^2 = 150$$

 $8x^2 = 8x + 16$ By classpad or $8x^2 - 8x - 16 = 0$ $8(x^2 - x - 2) = 0$ 8(x - 2)(x + 1) = 0 $\therefore x = -1, x = 2$ at $x = -1, y = 8(-1) + 16 = 8 \Rightarrow (-1, 8)$ at $x = 2, y = 8(2) + 16 = 32 \Rightarrow (2, 32)$

Gradient of $y = 8x^2$ at points of intersection $\frac{dy}{dx} = 16x$ at $x = -1, \frac{dy}{dx} = 16(-1) = -16$ at $x = 2, \frac{dy}{dx} = 16(2) = 32$

 $x^{3} = 4x$ By classpad or $x^{3} - 4x = 0$ $x(x^{2} - 4) = 0$ x(x - 2)(x + 2) = 0 $\therefore x = -2, x = 0, x = 2$ at $x = -2, y = 4(-2) = -8 \Rightarrow (-2, -8)$ at $x = 0, y = 4(0) = 0 \Rightarrow (0, 0)$ at $x = 2, y = 4(2) = 8 \Rightarrow (2, 8)$

Gradient of $y = x^3$ at points of intersection $\frac{dy}{dx} = 3x^2$ at x = -2, $\frac{dy}{dx} = 3(-2)^2 = 12$ at x = 0, $\frac{dy}{dx} = 3(0)^2 = 0$ at x = 2, $\frac{dy}{dx} = 3(2)^2 = 12$

$$\frac{dy}{dx} = 4ax^{3}$$

at $x = 3$
$$\frac{dy}{dx} = 4a(3)^{3} = 2$$

$$108a = 2$$

$$a = \frac{1}{54}$$

$$y = \frac{1}{54}x^{4}$$

$$b = \frac{1}{54}(3)^{4}$$

$$= 1.5$$

$$y = 2x + 3 \Rightarrow m = 2$$

perpendicular gradient $= -\frac{1}{2}$

$$\frac{dy}{dx} = 3ax^{2}$$

at $x = -1$,

$$\frac{dy}{dx} = 3a(-1)^{2} = -\frac{1}{2}$$

$$3a = -\frac{1}{2}$$

$$a = -\frac{1}{6}$$

$$y = -\frac{1}{6}x^{3}$$

$$b = -\frac{1}{6}(-1)^{3}$$

$$= \frac{1}{6}$$

Exercise 5E

Question 1

 $\frac{dy}{dx} = 2x + 3$

Question 2

 $\frac{dy}{dx} = 3x^2 - 4$

Question 3

 $\frac{dy}{dx} = 12x - 21x^2$

Question 4

 $\frac{dy}{dx} = 12x^3 + 6x^2 - 5$

Question 5

 $\frac{dy}{dx} = 7 + 2x$

Question 6

 $\frac{dy}{dx} = 12x - 3$

 $\frac{dy}{dx} = 8x + 7$

Question 8

 $\frac{dy}{dx} = 15x^2 - 8x$

Question 9

 $\frac{dy}{dx} = 20x^3 - 3$

Question 10

 $\frac{dy}{dx} = 4x + 7$

Question 11

 $\frac{dy}{dx} = -6x + 7$

Question 12

 $\frac{dy}{dx} = 1 + 2x + 3x^2 + 4x^3$

Question 13

 $\frac{dy}{dx} = -4 + 6x - 6x^2 + 4x^3$

$$\frac{dy}{dx} = 3x^2 - 6x$$

at $x = 1$
$$\frac{dy}{dx} = 3(1)^2 - 6(1) = -3$$

Question 15

 $\frac{dy}{dx} = 6x^{2}$ at x = -2 $\frac{dy}{dx} = 6(-2)^{2} = 24$

Question 16

 $\frac{dy}{dx} = 3x^2 - 2x$ at x = 3 $\frac{dy}{dx} = 3(3)^2 - 2(3) = 21$

Question 17

 $\frac{dy}{dx} = 3 - 6x^2 + 4x^3$ at x = 2 $\frac{dy}{dx} = 3 - 6(2)^2 + 4(2)^3 = 11$

$$\frac{dy}{dx} = 2x + 3$$

at $x = 2$
$$\frac{dy}{dx} = 2(2) + 3 = 7$$

 $y = 7x + c$
 $10 = 7(2) + c$
 $c = -4$
 \therefore equation of tangent $y = 7x - 4$

Question 19

$$\frac{dy}{dx} = 4x - 7$$

at $x = 5$
$$\frac{dy}{dx} = 4(5) - 7 = 13$$

 $y = 13x + c$
 $15 = 13(5) + c$
 $c = -50$
 \therefore equation of tangent $y = 13x - 50$

Question 20

$$\frac{dy}{dx} = 3x^2 - 10x$$

at $x = 4$
$$\frac{dy}{dx} = 3(4)^2 - 10(4) = 8$$

$$y = 8x + c$$

$$-2 = 8(4) + c$$

$$c = -34$$

 \therefore equation of tangent y = 8x - 34

 $\frac{dy}{dx} = 20x^3 - 20x^4$ at x = 1 $\frac{dy}{dx} = 20(1)^3 - 20(1)^4 = 0$ A gradient of 0 indicates a horizontal line \therefore equation of tangent y = 1

$$\frac{dy}{dx} = 3x^2 + 12x - 10 = 5$$
$$3x^2 + 12x - 15 = 0$$
$$3(x^2 + 4x - 5) = 0$$
$$3(x + 5)(x - 1) = 0$$
$$x = -5, x = 1$$

at
$$x = -5$$

 $y = (-5)^3 + 6(-5)^2 - 10(-5) + 1 = 76$
at $x = 1$
 $y = (1)^3 + 6(1)^2 - 10(1) + 1 = -2$
 \therefore coordinates (-5, 76) and (1, -2)

 $x^{2}-2x-15 = 0$ (x+3)(x-5) = 0 x = -3, x = 5 ∴ coordinates (-3, 0) and (5, 0)

$$\frac{dy}{dx} = 2x - 2$$

at $x = -3$
$$\frac{dy}{dx} = 2(-3) - 2 = -8$$

at $x = 5$
$$\frac{dy}{dx} = 2(5) - 2 = 8$$

$$3y = 9x - 1$$

$$y = 3x - \frac{1}{3} \Rightarrow m = 3$$

$$\frac{d}{dx}(x^2 - 7x) = 2x - 7$$

$$2x - 7 = 3$$

$$2x = 10$$

$$x = 5$$

at $x = 5, y = 5^2 - 7(5) = -10$
∴ coordinates (5, -10)

$$y = 2x + 3 \implies m = 2$$

$$\frac{d}{dx}(x^3 + 3x^2 - 7x - 1) = 3x^2 + 6x - 7$$

$$3x^2 + 6x - 7 = 2$$

$$3x^2 + 6x - 9 = 0$$

$$3(x^2 + 2x - 3) = 0$$

$$3(x + 3)(x - 1) = 0$$

$$x = -3, x = 1$$

at
$$x = -3$$

 $y = (-3)^3 + 3(-3)^2 - 7(-3) - 1 = 20$
at $x = 1$
 $y = (1)^3 + 3(1)^2 - 7(1) - 1 = -4$
 \therefore coordinates (-3, 20) and (1, -4)

Exercise 5F

Question 1

$$y = \sqrt{x} = x^{\frac{1}{2}}$$
$$\frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$$
$$= \frac{1}{2\sqrt{x}}$$

Question 2

$$y = \frac{1}{x} = x^{-1}$$
$$\frac{dy}{dx} = -1x^{-2}$$
$$= -\frac{1}{x^2}$$

Question 3

$$y = \frac{3}{x} = 3x^{-1}$$
$$\frac{dy}{dx} = -1.3x^{-2}$$
$$= -\frac{3}{x^2}$$

$$\frac{dy}{dx} = \frac{1}{2} 6x^{-\frac{1}{2}}$$
$$= \frac{3}{\sqrt{x}}$$

$$\frac{dy}{dx} = \frac{1}{3} 6x^{-\frac{2}{3}}$$
$$= \frac{2}{x^{\frac{2}{3}}}$$
$$= \frac{2}{\sqrt[3]{x^2}}$$

Question 6

$$y = \sqrt{x^3}$$
$$= (x^3)^{\frac{1}{2}}$$
$$= x^{\frac{3}{2}}$$
$$\frac{dy}{dx} = \frac{3}{2}x^{\frac{1}{2}}$$
$$= \frac{3\sqrt{x}}{2}$$

$$y = 2x^{\frac{1}{3}}$$
$$\frac{dy}{dx} = \frac{1}{3}2x^{-\frac{2}{3}}$$
$$= \frac{2}{3x^{\frac{2}{3}}}$$
$$= \frac{2}{3\sqrt[3]{x^2}}$$

$$y = x^{-3}$$
$$\frac{dy}{dx} = -3x^{-4}$$
$$= -\frac{3}{x^{4}}$$

Question 9

$$y = x^{-4}$$
$$\frac{dy}{dx} = -4x^{-5}$$
$$= -\frac{4}{x^{5}}$$

Question 10

$$y = 2x^{-3}$$
$$\frac{dy}{dx} = -3 \times 2x^{-4}$$
$$= -\frac{6}{x^{4}}$$

$$y = 5x^{-4}$$
$$\frac{dy}{dx} = -4 \times 5x^{-5}$$
$$= -\frac{20}{x^{5}}$$

$$y = x^{2} + x^{\frac{1}{2}}$$
$$\frac{dy}{dx} = 2x + \frac{1}{2}x^{-\frac{1}{2}}$$
$$= 2x + \frac{1}{2\sqrt{x}}$$

Question 13

$$y = 3x^{2} - 4x^{\frac{1}{2}}$$
$$\frac{dy}{dx} = 6x - \frac{1}{2}4x^{-\frac{1}{2}}$$
$$= 6x - \frac{2}{\sqrt{x}}$$

Question 14

$$y = x + x^{-1}$$
$$\frac{dy}{dx} = 1 + (-1)x^{-2}$$
$$= 1 - \frac{1}{x^2}$$

$$y = x^{2} - x^{-2}$$
$$\frac{dy}{dx} = 2x - (-2)x^{-3}$$
$$= 2x + \frac{2}{x^{3}}$$

$$y = x^{\frac{1}{2}} + 3x^{-1}$$
$$\frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}} + (-1)3x^{-2}$$
$$= \frac{1}{2\sqrt{x}} - \frac{3}{x^{2}}$$

Question 17

$$y = x^{2} + x + 1 + x^{-1} + x^{-2}$$

$$\frac{dy}{dx} = 2x + 1 + (-1)x^{-2} + (-2)x^{-3}$$

$$= 2x + 1 - \frac{1}{x^{2}} - \frac{2}{x^{3}}$$

Question 18

$$f(x) = 2x^{-1}$$

$$f'(x) = (-1)2x^{-2}$$

$$= -\frac{2}{x^{2}}$$

$$f(x) = 3x^{\frac{-1}{2}}$$
$$f'(x) = (-\frac{1}{2})3x^{\frac{-3}{2}}$$
$$= -\frac{3}{2x^{\frac{3}{2}}}$$
$$= -\frac{3}{2\sqrt{x^{3}}}$$

$$f(x) = 6x^{\frac{1}{3}}$$
$$f'(x) = (-\frac{1}{3})6x^{\frac{4}{3}}$$
$$= -\frac{2}{x^{\frac{4}{3}}}$$
$$= -\frac{2}{\sqrt[4]{3}\sqrt{x^4}}$$

Question 21

$$f(x) = x^{-\frac{1}{3}}$$
$$f'(x) = (-\frac{1}{3})x^{-\frac{4}{3}}$$
$$= -\frac{1}{3x^{\frac{4}{3}}}$$
$$= -\frac{1}{-\frac{1}{3\sqrt[4]{x^4}}}$$

$$y = 4x^{-1} - x^{2}$$
$$\frac{dy}{dx} = -\frac{4}{x^{2}} - 2x$$
$$at x = 2$$
$$\frac{dy}{dx} = -\frac{4}{(2)^{2}} - 2(2)$$
$$= -5$$

$$y = x^{-2}$$

$$\frac{dy}{dx} = -2x^{-3} = -\frac{2}{x^3}$$
at $x = -2$

$$\frac{dy}{dx} = -\frac{2}{(-2)^3}$$

$$= \frac{1}{4}$$

Question 24

$$y = 1 - x^{-1}$$

$$\frac{dy}{dx} = 0 - (-1)x^{-2} = \frac{1}{x^2}$$
at $x = 4$

$$\frac{dy}{dx} = \frac{1}{4^2}$$

$$= \frac{1}{16}$$

$$y = 3x^{3} - 2x^{-1}$$
$$\frac{dy}{dx} = 9x^{2} + \frac{2}{x^{2}}$$
$$at x = 1$$
$$\frac{dy}{dx} = 9(1)^{2} + \frac{2}{(1)^{2}}$$
$$= 11$$

$$y = x^{\frac{4}{3}}$$
$$\frac{dy}{dx} = \frac{4}{3}\sqrt[3]{x}$$
$$at x = 8$$
$$\frac{dy}{dx} = \frac{4}{3}\sqrt[3]{8}$$
$$= \frac{8}{3}$$

Question 27

$$y = 6x^{\frac{1}{3}} + 2x^{-3}$$
$$\frac{dy}{dx} = \frac{2}{\sqrt[3]{x^2}} - \frac{6}{x^4}$$
$$at x = 1$$
$$\frac{dy}{dx} = \frac{2}{\sqrt[3]{(1)^2}} - \frac{6}{(1)^4}$$
$$= -4$$

$$y = 2x^{-1} + x^{2} + 16x^{-2}$$

$$\frac{dy}{dx} = -\frac{2}{x^{2}} + 2x - \frac{32}{x^{3}}$$
at $x = 2$

$$\frac{dy}{dx} = -\frac{2}{(2)^{2}} + 2(2) - \frac{32}{(2)^{3}}$$

$$= -\frac{1}{2}$$

$$y = x^{-1}$$

$$\frac{dy}{dx} = -\frac{1}{x^2} = -\frac{1}{4}$$

$$x^2 = 4$$

$$x = \pm 2$$
at $x = -2, y = -\frac{1}{2} \Longrightarrow (-2, -\frac{1}{2})$
at $x = 2, y = \frac{1}{2} \Longrightarrow (2, \frac{1}{2})$

$$y = x^{\frac{1}{2}}$$

$$\frac{dy}{dx} = \frac{1}{2\sqrt{x}}$$

$$1 = \frac{1}{2\sqrt{x}}$$

$$2\sqrt{x} = 1$$

$$\sqrt{x} = \frac{1}{2}$$

$$x = \frac{1}{4}$$
at $x = \frac{1}{4}, y = \sqrt{\frac{1}{4}} = \frac{1}{2} \Longrightarrow (\frac{1}{4}, \frac{1}{2})$

$$y = x^{2} - 108x^{\frac{1}{2}}$$

$$\frac{dy}{dx} = 2x - \frac{54}{\sqrt{x}}$$

$$0 = 2x - \frac{54}{\sqrt{x}}$$

$$2x = \frac{54}{\sqrt{x}}$$

$$2x\sqrt{x} = 54$$

$$x^{\frac{3}{2}} = 27$$

$$(x^{\frac{3}{2}})^{\frac{2}{3}} = (3^{3})^{\frac{2}{3}}$$

$$x = 3^{2}$$

$$= 9$$

$$y = 9^{2} - 108 \times 3$$

$$= -243$$

$$(9, -243)$$

Question 32

 $y = x^{\frac{1}{2}}$ $\frac{dy}{dx} = \frac{1}{2\sqrt{x}}$ at x = 4 $\frac{dy}{dx} = \frac{1}{2\sqrt{4}} = \frac{1}{4}$ $y = \frac{1}{4}x + c$ $2 = \frac{1}{4}(4) + c$ c = 1 $\therefore \text{ equation of tangent } y = \frac{1}{4}x + 1$

 $y = x^{-1}$ $\frac{dy}{dx} = -\frac{1}{x^{2}}$ at x = 1 $\frac{dy}{dx} = -\frac{1}{(1)^{2}} = -1$ y = -1x + c 1 = -1(1) + c c = 2 \therefore equation of tangent y = -x + 2

Question 34

 $y = x^{-2}$ $\frac{dy}{dx} = -\frac{2}{x^{3}}$ at x = 2 $\frac{dy}{dx} = -\frac{2}{(1)^{3}} = -\frac{1}{4}$ $y = -\frac{1}{4}x + c$ $\frac{1}{4} = -\frac{1}{4}(2) + c$ $c = \frac{3}{4}$ $\therefore \text{ equation of tangent } y = -\frac{1}{4}x + \frac{3}{4} \text{ or } 4y = -x + 3$

$$16y = 41x + 6$$

$$y = \frac{41}{16}x + \frac{6}{16} \Rightarrow m = \frac{41}{16}$$

$$y = 2x - x^{-1}$$

$$\frac{dy}{dx} = 2 + \frac{1}{x^{2}}$$

$$\frac{41}{16} = 2 + \frac{1}{x^{2}}$$

$$\frac{1}{x^{2}} = \frac{9}{16}$$

$$x^{2} = \frac{16}{9}$$

$$x = \pm \frac{4}{3}$$

at $x = -\frac{4}{3}$

$$y = 2(-\frac{4}{3}) - \frac{1}{(-\frac{4}{3})}$$

$$= -\frac{8}{3} + \frac{3}{4}$$

$$= -\frac{23}{12}$$

at $x = \frac{4}{3}$

$$y = 2(\frac{4}{3}) - \frac{1}{(\frac{4}{3})}$$

$$= \frac{8}{3} - \frac{3}{4}$$

$$= \frac{23}{12}$$

 \therefore coordinates are $(-\frac{4}{3}, -\frac{23}{12})$ and $(\frac{4}{3}, \frac{23}{12})$

Gradient at
$$P(x, \frac{1}{x}) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \left(\frac{1}{x+h} - \frac{1}{x}\right) \frac{1}{h}$$

$$= \lim_{h \to 0} \left(\frac{x - (x+h)}{x(x+h)}\right) \frac{1}{h}$$

$$= \lim_{h \to 0} \left(\frac{h}{x(x+h)}\right) \frac{1}{h}$$

$$= \lim_{h \to 0} \frac{1}{x(x+h)}$$

Gradient at
$$P(x, \sqrt{x}) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \left(\frac{\sqrt{x+h} - \sqrt{x}}{h} \right) \left(\frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}} \right)$$

$$= \lim_{h \to 0} \frac{x+h-x}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \lim_{h \to 0} \frac{h}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{x} + \sqrt{x+h}}$$

$$= \frac{1}{2\sqrt{x}}$$

Miscellaneous exercise five

Question 1

 $5^4 = 5^n$ а n = 4 $2^4 = n$ b *n* = 16 $2^n = 8$ С $=2^{3}$ *n* = 3 $6^{3+4} = 6^7$ d $6^n = 6^7$ *n* = 7 $2^6 \times 2^3 = 2^n$ е $2^9 = 2^n$ n = 9 $3^{2+n} = 3^6$ f 2 + n = 6*n* = 4 $10^{2+n} = 10^{6}$ g 2 + n = 6*n* = 4 $2^4 \times 2^3 = 2^n$ h $2^7 = 2^n$ *n* = 7 $4 \times 4^2 = 4^n$ i $4^3 = 4^n$ n = 3 $8^{5-n} = 8^2$ j 5 - n = 2n = 3

© Cengage Learning Australia Pty Ltd 2018

k
$$n = 0$$

l $3^{2+n+1} = 3^7$
 $n+3 = 7$
 $n = 4$
m $\frac{5^9 \times 5^n}{5^3} = 5^8$
 $5^{6+n} = 5^8$
 $n+6 = 8$
 $n = 2$
n $\frac{5^9}{5^3 \times 5^n} = 5^2$
 $5^{6-n} = 5^2$
 $6-n = 2$
 $n = 4$
o $(2^3)^3 = 2^n$
 $2^9 = 2^n$
 $n = 9$

a at x = 4, $y = 4^2 = 16$ at x = 5, $y = 5^2 = 25$ \therefore average rate of change is 9

b $\frac{dy}{dx} = 2x$ at $x = 8, \frac{dy}{dx}$

$$x = 8, \frac{dy}{dx} = 2(8) = 16$$

a at
$$x = 1$$
, $y = 1^{3} = 1$
at $x = 3$, $y = 3^{3} = 27$
 \therefore average rate of change $=\frac{27-1}{3-1} = 13$
b $\frac{dy}{dx} = -6x^{2}$
at $x = -2$, $\frac{dy}{dx} = -6(2)^{2} = -24$

2, 4, 8....

a $T_{10} = (2)2^9$ = 1024 **b** $T_{30} = (2)2^{29}$ = 1073 741 824 $2(2^{10} - 1)$

c
$$S_{10} = \frac{2(2^{-1})}{2-1}$$

= 2046
d $S_{30} = \frac{2(2^{30}-1)}{2-1}$

- **a** $\frac{dy}{dx} = -3x^2$
- **b** $\frac{dy}{dx} = 10x \frac{3}{\sqrt{x}}$
- **c** $\frac{dy}{dx} = 10x \frac{2}{x^3}$

$$\frac{dy}{dx} = -\frac{1}{x^2}$$

at $x = 0.5$
$$\frac{dy}{dx} = -\frac{1}{(0.5)^2}$$
$$= -4$$

Question 7

- **a** reciprocal relationship xy = 6
- **b** symmetry of *y* values suggests a quadratic relationship which is confirmed by a constant second difference of 2. This indicates a = 1.

When x = 0, $y = 1 \Longrightarrow c = 1$

$$y = x^{2} + bx + 1$$

Using (1, 2)
$$2 = 1^{2} + b + 1$$

$$b = 0$$

$$\Rightarrow \text{ equation is } y = x^{2} + 1$$

c Constant first difference of 3 indicated a linear relationship with a gradient of 3.

y = 3x + cWhen x = 0, $y = 5 \Rightarrow c = 5$ ∴ equation is y = 3x + 5

d Constant first ratio of 3 indicates an exponential relationship with a base of 5. $y = a \times 5^x$.

```
Using (2, 25)

25 = a \times 5^2

a = 1

\therefore equation is y = 5^x
```

e symmetry of *y* values suggests a quadratic relationship which is confirmed by a constant second difference of 2. This indicates a = 1.

When x = 0, $y = 0 \Rightarrow c = 0$ $y = x^2 + bx$ Using (-4, 12) $12 = (-4)^2 - 4b$ 4b = 4 b = 1 \Rightarrow equation is $y = x^2 + x = x(x+1)$

f Constant first ratio of 10 indicates an exponential relationship with a base of 10. $y = a \times 10^{x}$

Using (2, 100) $100 = a \times 10^2$ a = 1 \therefore equation is $y = 10^x$

g Constant first ratio of 2 indicates an exponential relationship with a base of 2. $y = a \times 2^{x}$

```
Using (2, 16)

16 = a \times 2^2

4a = 16

a = 4

\therefore equation is y = 4 \times 2^x

= 2^{x+2}
```

h reciprocal relationship xy = -24

i The three zero y values indicate the three x-intercepts in a cubic relationship

```
y = ax(x-3)(x+3)
Using (1, -16)
-16 = -a \times 1 \times (1-3)(1+3)
-16 = -8a
a = 2
∴ equation is y = 2x(x-3)(x+3)
```

Let the three angles be 10, 10 + d, 10 + 2d 10+10+d+10+2d = 180 30+3d = 180 3d = 150d = 50

The other angles are 60° and 110° .

Question 9

$$T_{4} = ar^{3} = 100$$

$$a(5)^{3} = 100$$

$$a = \frac{100}{125}$$

$$a = 0.8$$

$$T_{1} = 0.8, T_{n+1} = 5T_{n}$$

Question 10

a
$$2 \times 10^7 \times 4 \times 10^4$$

= 8×10^{11}

b 8×10^{11}

c
$$(2 \times 10^7)^3$$

= $2^3 \times 10^{21}$
= 8×10^{21}

d
$$(4 \times 10^4)^2$$

= $4^2 \times 10^8$
= 16×10^8
= 1.6×10^9

e
$$\frac{4 \times 10^4}{2 \times 10^7}$$

= 2 × 10⁻³
f $\frac{2 \times 10^7}{4 \times 10^4}$
= 0.5 × 10³
= 5 × 10²

Sequence 1

- **a** 5, 17, 53, 161, 485
- **b** Neither
- **c** $S_5 = 5 + 17 + 53 + 161 + 485 = 721$
- **d** $T_{18} = 774\,840\,977$ (By classpad)
- **e** $S_{18} = 1162\ 261\ 446$

Sequence 2

- **a** $\frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1, 2$
- **b** Geometric

c
$$S_5 = \frac{\frac{1}{8}(2^5 - 1)}{2 - 1} = 3.875$$

d $T_{18} = 0.125 \times 2^{17} = 16384$

e
$$S_{18} = \frac{0.125(2^{17} - 1)}{2 - 1} = 32767.875$$

Sequence 3

a -5, 5, 15, 25, 35

b Arithmetic

c
$$S_5 = \frac{5}{2}[2(-5) + 4(10)]$$

= 75

d
$$T_{18} = (-5) + 17(10)$$

= 165

$$e S_{18} = \frac{18}{2} [2(-5) + 17(10)] = 1440$$

Question 12

a $\frac{dy}{dx} = 6x^2 - 1$ at x = 1 $\frac{dy}{dx} = 6(1)^2 - 1$ = 5y = 5x + c4 = 5(1) + cc = -1 \therefore equation of tangent is y = 5x - 1

b
$$6x^2 - 1 = 23$$

 $6x^2 = 24$
 $x^2 = 4$
 $x = \pm 2$

at
$$x = 2$$
, $y = 2(2)^3 - 2 + 3 = 17 \Rightarrow (2, 17)$
at $x = -2$, $y = 2(-2)^3 - (-2) + 3 = 17 \Rightarrow (-2, -11)$

- **a** From x = 1 to x = 6 the function has an average rate of change of 64
- **b** At x = 5 the function has an instantaneous rate of change of 105

Question 14

C and D are immediate choices as the function is cubic.

As x gets larger, $\frac{dy}{dx}$ becomes large and positive \Rightarrow Graph C

Question 15

a x(x+6)(x-6) = 0x = -6, 0, 6 $\therefore 3$ places

b As
$$x \to \infty$$
, $\frac{dy}{dx}$ is positive
For example, at $x = 100$
 $\frac{dy}{dx} = 100 \times 106 \times 104 > 0$

c As
$$x \to -\infty, \frac{dy}{dx}$$
 is negative
For example, at $x = -100$
 $\frac{dy}{dx} = -100 \times (-94) \times (-106) < 0$

 $\frac{dy}{dx} = \frac{12x}{25} - \frac{6x^2}{125}$ $= \frac{60x - 6x^2}{125}$ $\frac{60x - 6x^2}{125} = \frac{144}{125}$ $60x - 6x^2 = 144$ $6x^2 - 60x + 144 = 0$ $6(x^2 - 10x + 24) = 0$ 6(x - 6)(x - 4) = 0x = 4, x = 6

at
$$x = 4$$
, $y = \frac{6(4)^2}{25} - \frac{2(4)^3}{125} = 2.816$

